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A SURVEY OF RE-SULTS

In this final technical report we will briefly comment upon our research
accomplishments sponsored by the Grant AFOSR-86-026. Much-, of our work during this
period was concerned with various aspects of estimation theory. Addizional work was
done in the areas of contention resolution for local area computer networks, signal detection
theory, data compression for image processing, and linear system theory.

Typically, the problem of estimation is concerned with attempting to approximate a
desired quantity by a function of the available data so as to minimize a prescribed fidelity
criterion. A commonplace example might be given by attempting to estimate a second order
random variable X (perhaps a signal of intcrcst) by some function f(- ) of the datum Y
(perhaps a noise corrupted version of the signal) so as to minimize the mean square error
E([X - f(y)]2 ). This example appears in many works on the subject of estimation theory.
In earlier work, sponsored by a previous AFOSR Grant, we showed [1] that the best such
function is not necessarily given by f(Y) = E(X I Y), even thought X and Y are both
bounded random variables. Moreover, it might seem that there is little justification from a
practical viewpoint of choosing the mean square error as th- appropriate fidelity criterion.
Consider a fidelity criterion given by the expec,,,ion of a cost function of the error. In the
context of estimation theory, one is often confronted with two concerns in choosing a cost
function: the concern that the cost function adeouately reflects the cost one wishes to attach
to an error, and the concern that the cost function results in a problem which one finds to be
mathematically tractable. A cursory inspection of the literature in estimation theory might
suggest that in many cases the second of the above concerns totally eclipses the first
concern. We began a serious study of estimation theory. This work was directed to the
very underpinnings of estimation theory, and it is representative of what in many cases in
the literature is ignored, is postulated with no col.cern for the consistency of everything
being postulated, or is otherwise swept Under the rug. The two such areas in which we
have achieved some success are concerned with continuity properties of filtrations of a-
algebras generated by stochastic processes and with the convergence rate of the martingale
convergence theorem. We will now briefly comment on our results in these areas.

Let (Q , F, P) be a probability space. We :, filtration of a-algebras to be any

nondecreasing collection of o-subalgebras of f indexed by [0, -,). Let (Ft : t > 0) be a
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filtration. Define F0 - = Fo ; otherwise, define Ft - = V Fs and Ft+ = (Th fs-
S~t

S>t

We say that a filtration is continuous at t if F1 F 1 +; we say that it is left continuous at t

if Ft - = Ft ; and we say that it is right continuous at t if ft = Ft+. The filtration

(Ft : t > 0) is continuous, left continuous, or right continuous if it is Continuous, left

continuous, or right continuous, respectively, at t for all t 0. Let {X(t): t E [0, 0-)) be a

stochastic process defined on (2, F, P). By a P-null set we mean a measurable set which
has probability zero. The canonical filtration of this stochastic process is given by

Ft = o(X(s): s < t) V (P-null sets) for t > 0.

In the context of estimation theory where the data are represented by a stochastic
process indexed by an interval of real numbers, much of the current literature is concerned
with stochastic differential e0uations and with martingale theory. Stochastic differential

equations often arise as models for stochastic dynamical systems and techniques from
martingale theory often arise in the analysis of estimation schemes and their approximation

properties. In these areas one often encounters hypotheses stipulating the right continuity

of filtrations of o-algebras generated by stochastic processes. This is a blanket assumption
made by many in the French and Soviet schools of stochastic piocess theory; see, for
example, 12], [31, 141, and 15]. However, the question emerges as to when this
assumption is justified or as to what reasonable hypotheses might imply it. It is often
tempting and pleasing to the intuition to believe that the regularity of the sample paths of a
stochastic process and the continuity of its associated canonical filtration are closely related.
For example, separable Brownian motion has almost surely continuous sample paths and
with the aid of the Blumenthal Zero-One Law [6] we see that its canonical filtration is
continuous. Conversely, martingales with respect to right continuous filtrations have
versions that are aimost surely cadlag 17 1. If we heuristically think of the canonical

filtration Ft as the "data" conveyed by the stochastic process {X(,,): t e 10, -o)) up to and
including time t, we may be inclined to suppose that the continuity of the sample paths of

the process might prcventjumps in the "data" {ft : t _> 0); and we also might suppose that
the continuity of the "data" flow would influence the rcgularity of the sample paths of the
stochastic process. (In (I we pointed out that this is a totally erroneous concept of data.)

In [8] we investigated what properties charactcrze fillrazion, of o-aigebras that are
continuous. In this work we showed that the regularity of the sample paths of a stochastic
process and the continuity of its associated filtration are logically independent; we presented
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an example of a stochastic process with infinitely diffferentiable sample paths and a
discontinuous canonical filtration and we also gave an example where a stochastic process
could have an arbitrarily irregularly prescribed sample path (e.g. r.on-Lebesgue
measurable) and a continuous canonical filtration. We also presented an example of a
stochastic process whose canonical filtration was discontinuous at every point. We then
went on and established conditions guaranteeing the continuity of a filtration of

G-algebras. Also, we presented necessary and sufficient conditions for a filtration of o-
algebras to be continuous, right continuous, or left continuous. For example, we
established the following results in [81:

Theorem: Let (2, f, P) be a probability space and {ft : t 01 be a filtration on

(A , F, P) so that Jo contains the P-null sets. Then the filtration is continuous at to if and

only if for all Y e L(-2, f, P), the stochastic process defined by Yt = E(Y I Ft ), t _> 0, is

L2 continuous at to.

Let (A, F, P) be a probability space. A o-subalgebra A of f is said to be

essentially countably generated if there exists a countable subset K of Fso that

G3(K) V (P-null sets) = 'I V (P-null sets).

Theorem: Let M be a separable metric space and {X(t): t -> 0) be a stochastic
process taking values in M that is left or right continuous in probability. Then

o(X(t): t > 0) is essentially countably generated.

Theorem: Let (Q, f, P) be a separable probability space. Then if (ft : t 0) is a

filtration on (2, F., P) so that F0 contains the P-null sets, there exists a countable subset

CofRsothat fortv C, Ft= t+ = Ft.

Now we comment upon some of our recent results on martingales. Frequently, in

estimation theory one derives a sequence of estimators, say Yn, and one desires to show

that as n-oo, Ynl converges in an appropriate sense. A typical example arises in an attempt

to estimate a second order random variable X as a function of the available data, say

(Zn: n E NJ, by choosing Yn = E( X I Z 1, Z2, .. . , Zn.). In this endeavor, the martingale

convergence theorem often surfaces as a useful too] in establishing convergence.
I lowever, in a practical circumstance, if one were interested in convergence and if n
correspo,,ded to th progression of time, then the rate of convergence would also be of
concern. This would arise, for instance, if Yn represented the estimate after n samples of

data are taken and data is sampled at regularly spaced intervals. The key to establishing this
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rate of convergence is intimatcly linked with the convergence rate of the martingale
convergence theorem. In 191 we examined the convergence rate of the martingale
convergence theorem, and we showed that this convergence can be nonuniform and,
consequently, arbitrarily slow. This result that thle convergence rate of the martingale
convergence theorem can be arbitrarily slow is importwit not only from the obvious
practical viewpcin!, but also from the viewpoint of the mathematician, since the martingale
convergence theorem is one of the key theorems of probability tltory.

Another aspect of the martingale convergence theorem which we investigated was
concerned with the use Of the martingale convergence theorem in estimating a random

variable X. Let X be a second order randon variable, and let (Z-: n ( N) be a sequence

of random variables representing data. Often one namy attempt to estimate X based upon the
first n terms of the data sequence by E( X I Z 1, Z2 , .. . , Z,,). In [101 we pointed out

some problems associated with an overly cavalier usinge of the martiigale convergence
theorem in this context. In particular, we gave an ex-ple where each of the above random
variables was zero mean Gaussian with a positive variance, E( X I Z1 , Z 2, .. . Zn) = 0

almost surely for each n e N, and yet for any positive integer k there exists a function

fk:R---)R so that fk(Yk) = X pointwise on the. underlying probability space.

In a similar context as the above, in I Il we noted that for a second order random
variable X, the rate of the L2 convergence (of IX l Y 1, Y2, . . , Yn] can crucially depend

upon X. That is, any L2 perturbation in X could drastically alter the rate of convergence.

Another aspect of estimation theory with which we were concerned dealt with the
idea of when an estimator which was optimal under a given fidelity criterion would also be
optimal under certain other fidelity criteria. A classical paper on this subject in [12] was
written by Sherman, and this result is known in the engineering literature as Sherman's
theorem. However, a close inspection of 1121 shows some erroneous claims. !in [13] we

presented a correct derivation of the effort undertaken in [ 121. The following theorem is a

correct version of Sherman's theorem and we proved it in [13].

Theorem: Let k e N, (0, S, P) be a probability space, and X, Y .... Yk be random

variables defined on (Q, , P), with X integrablc. Let M:Fk -- R be a Borel measurable

function such that M[Y 1 (CO), .Yk(co)] = EIX ! Y1, .. .. YkI(co) a.s., and assume that

there exists a regular conditional distribution function of X conditioned on oY( 1'....Yk),

F:R x Q --) 10, 11, such that F(x+M[Y 1 (o), .. . ,Yk()l,(1), as a function of x with co

fixed, is unimodal about the origin and symmetric, Then N1 Y[ 1, • ",Yk] minimizes the
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quantity E[(X-f(Y ' . .Yk))] over all Borel measurable functions f:Rk - R where

( :R ---) [0, co) is even and nondecreasing on [0, oo).

Several attempts at a proof of the above result, have been presented in the engineering
literature, and each that we know of is wrong; counterexamples to these efforts are given in
[14].

Thus, the result in the above theorem requires a regular conditional distribution
function that, when properly shifted, is symmct:-ic and unimodal about the origin and a cost
function that is nonnegative, even, and nondecreasing to the right of the origin. It is easy
to see that if in this theorem we let k=1 and X and Y be mutually Gaussian random
variables then the resulting regular conditional di.tribution function is symmetric and

unimodal about E[XIYJ(w) for any fixed &w. This special case explains why Sherman's
theorem is often invoked to add a token claim of generality to papers that only consider
Gaussian distributions. When one attenipts to venture outside this somewhat limited arena,
however, the conditions which Theorem 1 places on the regular conditional distribution
function immediately begin to feel overly restrictive. After all, how comfortable should we
be with the assumption that the regular conditional distribution function under consideration
is unimodal about the conditional mean? The conditions on the cost function, on the other
hand, are extremely nonrestrictive and, in fact, allow for many interesting, albeit
impractical, choices. For example, the cost function given by

1xl
r

0
where C denotes a Cantor subset of 10, 00) of positive Lebesgue measure, satisfies the
conditions of the above theorem. This imbalance suggests the possibility of lessening the
restrictions on the regular conditional distribution function by perhaps slightly increasing
the restrictions imposed on the cost function. In [141, we presented a more general
treatment of this general subject. The following results are presented in [141. Notice that
the first result dispenses with the unimodality assumption, and the second result allows us
to base our estimate upon random variables measurable with respect to a non countably

generated ou-algebra, such as, for instance, that which may be generated by a random
object.

Theorem: Let k = N, (Q, S, P) be a probability space, and X, Y 1, . . ,Yk be random

variables defined on (Q, S, P), with X integrable. Let M:Rk -* R be a Borel measurable

function such that M!Y I (w), .. , Yk()l = EIX Y1, .. .. Ykl(w) a.s., and assume that

there exists a regular conditional distribution function of X conditioned on u(Y 1 , . ",Yk),
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F:R x Q2 --- [0, 11, such that F(x+M[YI(,) . .Yk(l)t,co), as a Ainction of x with.-U

fixed, is symmetric. Then M[YI .1' *Yk] minimizes the quantity E[CI(X-f(Y1 ..... I Yk))

over all Borel measurable functions f:Rk -> R where -I-:R - [0, o) is even and convex.

Theorem: Let (Q2, 5, P) be a probability space, A be a c-subalgebra of S, and X be a

random variable defined on (K2, S, P) such that X is integzable. For each 0) C Q, let

M(w) = EIXIil](w), and assume that there exists a regular conditional distribution function

of X conditioned on -0, F:R x Q ---) 10,1], such that F(x+M(co),co), as a function of x with

c fixed, is symmetric. Then M minimizes the (,uartity E! Q(X-X)I over all Si-measurable

random variables X, where c1:R ---> [0, o) is even and convex.

In [ 151 and [ 161 our concern was directed toward fusing, or combining, estimates
based upon a finite number of cstimates of a fixed second order random variable X in order
to achieve a single "best" estimate of X. For example, if X, Y1 Y2, ... Yn are random
variables and X is sccoid order, how might E[X I Y 1], E[XIY 2 ... E[X I Yn] be

combined so as to approximate X in a iinimumn mean square sense? Although aspects of
this problem have been considered in the literature, we know of no other work in this area
that is correct. To illustrate some subtleties in this area, note the fo!lowing two examples.

Example: For an integer n > 1, consider a set of random variables [X, Y..... ,Yn) with
a joint probability density function given by

=1 1 ]n~ l-x2

f(x, Y 1 ., Yn) 1+! CXP x2 + [2 + x ex (Y ex .

It follows straightforwardly that the set {X, Y1 1. Yn) is not mutually Gaussian and

not mutually independent, yet any proper subset of {X, Y 1, . . •, Yn} containing at least

two random variables is mutually independent, mutually Gaussian, and identically
distributed with each random variable having z,.'ro nmean and unit, variance. For any

nonempty proper subset D of fY 1, .... Yn}, we note that E[X I DI = 0a.s. since X is

independent of D. I lowever, it follows quickly that

ElXIY 1 ,...,Y 1 1=-L-YI... exjJ- (y2 + y2 . + y2 a.s.
2"(1 2 "'"

Thus, since any Borel measurable fuction of the estimates E[X I DJ where Dranges over
all nonempty proper subsets of I Y 1 ..... Yn ) would le constant almost surely, it would

not be reasonable to attempt to estimate ElX I Y 1 . Yn based on a combination of

these estimates.
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Example: Let Q = 10, 11, F denote the Borel su'bscts of f, and P denote Lebesgue

measure on . Let A be a positive real numt-cr, G(Y1) = cy([O, 1/2)), o(Y2)=

o([1/4, 3/4)), and X(co) A for o e [0, 1/4) u [1/2, 3/4) and X(W) = -A for
c [1/4, 1/2) u [3/4 1]. Then it straighfforwa.-dly follows that ELXJY 1 ] = E[XIY2] = 0

a.s., but E[XIY 1, Y21 = X a.s. Notice that in this special case, any linear combination of
EIXIYI] and EIXIY2I yields an estimate equal to 0a.s., resulting in a mean square error in
approximating X of A2 , which can exceed any preassigned real number. Recalling that

E[XIY I] and E[XIY 2J, respectively, are a(Y !)-measurable and G(Y2)-measurable, we see

that E[XIYI] = E[XIY,] = 0 pointwise in o; similarly, we see that E[XIY 1 , Y2 ] = X

pointwise in co. Thus, in this situation, it is fruitless to attempt to approximate X based on
any function of ElXY 1 ] and EXIY2]J.

In [151 and [16] we proved Ohe fo!owvin g theorem.

Theorem: Consider a probability space ( , j P) and random variables X, N1 , .... N11

defined on (K2, fF, P) where n is a positive integer and X is a second order random variable.
Further, assume that for each positive integer i _< n, Ni has a zero mean Gaussian

distribution with positive variance given by oTi2, and that X, Nj,. . , Nn are mutually
independent. Define Yi = X + Ni for i = 1, ... , n. Then there exists a Borel

measurable function g:Rn--R such that EIXIY ... Y1] = g(EIXIY 1], .... , E[XIYn])

a.s.

A Monte Carlo variance reduction technique known as importance sampling has
recently been applied to many problems in data corrnMunications. This technique holds the
gromise of offering vast improvements to traditional Monte Carlo methods. In [17] and
[181 we considered importance sampling applied to the estimation of tail probabilities. In
this work we gave counterexamples to some commonly used types of importance
sampling. Then we introduced a new method of importance sampling, which we called
Importance Sampling via a Simulacrum, and we illustrated how it could outperform some
other methods of importance sampling.

In other papers we pointed out how wrong certain commonly accepted techniques
and results in statistical signal processing can be. In [ 19] we presented a collection of
counterexamples in detection and estimation. In 120] we presented a collection of
counterexamples in conditioning. In [211, we presented a collection of counterexamples in
maximum likelihood estimation. In [221 and 1231 we presented some comments on some
problems in Kahnan filtering. The papers noted in this paragraph provide several
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counterexamples to what is often taken as common knowledge in the literature of statistical
signal processing. A copy of 120] is appended to this .x port.

Another direction of our research efforts was in tie area of contention resolution

for local area computer networks. In the last few years, packet broadcasting random

multiple-access computer communication networks have been commercially available. A
typical example of such a network is the Ethcrnet, developed by Xerox, which was

designed based on the idea of carrier sense multip!e access with col'-sion detection. In

Ethernet, a station among a number of users shring a common channel will listen before
transmitting and dcfer if the channel is busy; when two or more staticas collide, each
colliding station waits for a random period of time before retransmitting. Although
Ethernet has tile advantage of easy interconnection of stations to the common channel and it

pro\ ides a high level of utilization of the 'hannel, it does not trtUly address the problem of
how to effectively resolve collisions in the chanel. Thus, a packet involved in a collision
may incur excessive delay due to waiting and abortion of transmission. Recently, a

protocol called Enet 11 was introduced 1241 as a candidate for the second generation of
Ethernet. This protocol is designed to effectively resolve contention in a broadcast
multiple-access network such as Ethcrnet. We investigated the Enet II protocol in [25], and

in this investigation, we gave expressions for the average time required to resol,, a
collision involving k stations and (le average time 1o:" a )ar:iculr station involved in a k-

way collision to send its packet successfully. Our results in this area were derived
analytically, without recourse to effort., based on approximations or simulations. In [25]
we also considered the eft-ciency of the protocol, and we derived a lower bound for the

maxinmum efficiency.

In tile area of image processing, a modest effort was directed toward studying the

properties of a data compression scheme for image processing. In 126] we considered a
modification of an existing data compression scheme which allowed more general ways of
processing the image data while maintaining the favorable data compression rates.

We also devoted some effort to the problem of signal detection. In [27] we

studied the problem of choosing the nonlinearity g( ) when the test statistic was
constrained to be of tile form

an

i~ l

where the xi's repiesented our observations. Observe that in the ease of a constant signal



additively comipted by mutually inupenuent, identically distribt,.ed noise, the Neyrnan-
Pearson test statistic is of the above form. If the noise seouence were not mutually
independent, then the test statistic would not necessarily be of this form. However, it
might seem reasonable to suppose that in some cases, if the noise were "almost mutually
independent" then a test statistic of the above form might be a reasonable approximation to
an appropriate test statistic. In [27] we studied the problem of choosing the function g( )
so as to maximize the asymptotic relative efficiency of this detector relative to any other
detector of this form with a different nonlinearity.

In [28 we studied another aspect of statistical hypothesis testing. Consider the
situation of testing one simple hypothesis against another simple hypothesis. The
likelihood ratio (i.e. a Radon-Nikodym derivative) often arises; and it is known that in
several contexts (e.g. Neyman-Pearson, Bayes, minimax) an optimum test is given by
comparing the. likelihood ratio again:,t azw appropriztely chosen threshold. In [28] ,e
studied the question of when a likelihood ratio with respect to two probability measures P0

aid P1 might also be the likelihood ratio with respect to another pair of probability
measures QO and Q 1 on the same measurable space. in this way, one likelihood ratio
might implement an optinlum processing of the ciata for many pairs of probability
measures; that is, an optimal data processor mighit bo optimal even when different
probability measures are governiog the daa. For the moment, consider the case where P0

is absolutely continuous with :espect to P1 ; we gave examples where the Radon-Nikodym
dP0

derivative d was the likelihood ratio not only for testing PO against P1 , but also for

testing QO against Q", even when P0 was extrenely dissimilar fron Q0 and P 1 was
extremely dissimilar from Q1.

In some recent efforts, N, - have ivestigated some aspects of linear systems.
Although the subject of linear systems has truly matured as a research area, we have
uncovered some unippreciated aspects of the theory. In [29] (see also [30]) we
investigated the representation of linear systems. in this work we established the following
result.

Theorem: Let Q be a locall) compact elparable mietric space, t be a o-finite measure on
'B( ) (where we use .1( ) to denotc the Borel subsets of a topological space), and k. be a
Borel measure oil a locally compact separable metric space W. Let
T:Lloc(Q, B(Q), gI))L1cx(W, '13(W), X.) be a positive, continuous, linear map. Then
there exists K:',(W) x .Q -) 10, o] so that

(i) For each 0) E Q, K( •, o) is a regular Borel measure on '(JW).
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(ii) For each E e q3(W), K(E, • ) is measurable on Q.

(iii) For each A E ',(f) with ,u(A) < 0, the measure

fK( -, (j) dt(w)

A
defined on 'A(W) is regular and 2-absolutely continuous.

(iv) T(f) = C f K( . , o)f+(co) du(u) -

L J K(., )f-(co) dt(co)
dkt

for f e L'(Q, B(Q), ri), where by this notation, we mean the difference of the Radon-
Nikodym derivatives of the measures given by the integrals.

Convolution frequently arisCs in the study of linear systems. In [31] we
constructed two bounded, Lebesgue integrable, nowhere zero functions whose convolution
is identically zero. This phenomenon seems to have been overlooked by many working in
the area of linear systems. In particular, it dashes any hope of deconvolution in this
situation. Also, although it is well known that L,(R), equipped with the operations of
pointwise addition and convolution, is a commutative Banach algebra, this result shows
that this commutative l3anach algebra LI(R) is not an integral domain. Indeed, it shows
much more than this, since there exist two nowhere zero integrable functions whose
convolution is everywhere zero. In [32] we showed the analogous result for sequences.
That is, we showed that there exist two summable, nowhere zero sequences whose
convolution was identically zero.

This has been a brief survey of our accomplishments; more details can be found in
the indicated publications. These accomplishments further our understanding of many
aspects of estimation theory, of the perforinance of a contention resolution scheme for local
area computer networks, of data compression for image processing, of signal detection
theory, and of linear system theory.
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ABSTRACT Consider the probability space ([0, 1], B ([0, 1]), ),
where X. denotes Lebesgue measure on B ([0, 1]), and

The concept of conditioning in probability theory forms

the basis for study in many areas of information sciences and consider the a-subalgebra G given by the family of all
systems. Even so, the subject of conditioning is often subsets of [0, 1] which are either countable or cocountable.
shrouded in heuristics, misunderstood, and misused. This Now, for B e B ([0, I), consider the conditional
paper considers several aspects of conditioning with an probability P(B I G). Since G contains all singletons ( a)),
emphasis on applications and explores several consequences and hence might be seen as being completely informative, an
of an overly cavalier approach to the oft neglected measure-theoretic subtleties involved in this area. overly cavalier investigator might suppose that P(B I G) isequal to IB. In other words, one might rationalize that to

. INTRODUCTION know the sets in G implies that one knows co itself and hence

Conditioning in probability theory is a widely recurring knows whether or not w) is contained in B, leading to the
concept in many areas of information sciences and systems. conclusion that P(B I G) should be one when co is contained
For example, conditioning is central to many popular tech- in B and zero otherwise. It follows trivially, however, from
niques in applied probability and, in fact, lies at the heart of the definition of conditional probability, that P(B I 9) =
many aspects of estimation theory. In spite of this wide-
spread popularity, the subject of conditioning is commonly P(B), except possibly off of a countable subset of [0, I1.
misunderstood and tools involving conditioning are fre- For another example, consider a probability space
quently misapplied. To rephrase Doob [5, p.v], condition- (D', , P). A commonly used model in estimation theory
ing is simply a branch of measure theory, and no attempt involves the model of data as a filtration ( F.: n = N) of
should be made to sugarcoat this fact. Unfortunately, many
efforts at research have apparently been undertaken without a-subalgebras of F. Suppose that the a-algebra F is
appropriate concern for the measure-theoretic subtleties separable; that is, suppose F is generated by a countable
associated with the concept of conditioning. In this paper
we review several aspects of conditioning and make a mod- family of subsets of D. Does it follow that Fn is separable
est attempt to suggest caveats which seem to have been for each n? As the following example illustrates, a-sub-
frequently overlooked by many in this area. Although sev-
eral of our results are well known to the specialist in measure algebras of separable a-algebras need not be separable.
theory, they nevertheless seem to have been overlooked by Assume that 0 = [0, I] and F = B ([0, 1]). Further, let
many working in information sciences and systems.

In what follows, for a topological space T, we will let G be the a-subalgebra of Fgiven by the countable and
B (T) denote the family of Borel subsets of T. Also, we cocountable subsets of [0, 11. Since F= a((a, b): 0:5 a < b
recall that a subset of a set is said to be cocountable if its < 1 and a,b e Q) it follows that F is separable. Assume
complement is countable. Further, for a subset S, we will now that Gis also separable; that is, assume that G=
let Sc denote the complement of S, and we will let IS denote o(An: n r N) where An is a subset of (0, 1] for each n.
the indicator function of S. In addition, we will let N denote
the set of positive integers, Q denote the set of rational num- Since G contains only countable and cocountable subsets of
bers, and R denote the set of real numbers. Finally, for a (0, I, we may assume that An is countable for each n. Let
random variable X, o(X) will denote the a-subalgebra 0o
generated by X. B = U) An, and note that B is also a countable subset of

n=l
II. SIGMA-ALGEBRAS [0, 1]. Hence, there exists a real number x in [0, 1] which is

not an element of B. Notice also that if Dis the family of all
The topic of a-algebras is basic to the subject of subsets of B and their complements, then D is a a-sub-

conditioning since conditioning is conventionally taken with algebra such that G D D = a(An: n e N). But, D G since
respect to a a-algebra. In many cases the a-algebra of
interest is that generated by some random variables (x) is in G but not in D. This contradiction implies that G is
representing data. Hence, in applications, it is common to not separable even though it is a a-subalgebra of the
treat a-algebras as somehow representing knowledge or separable a-algebra F.
information associated with data. Consider the following
example from [2, pp.458-459] which shows that associating Now, let (fl, F) be a measurable space, and let Pbe a
a-algebras with knowledge, or information, as commonly family of probability measures on (, F). The triple
understood, can lead to incorrect conclusions. (, F, P) is called a probability structure. If S is a a-sub-

Presented at the Twenty Third Annual Conference on Information Sciences and Systems,
March 22-24, 1989, Baltimore, Maryland; to be published in the Proceedings of the conference.
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algebra of F, we say that Sis sufficient if for each But Zo cannot be in D since Z e B (R). This contradiction

F-measurable bounded real valued function f defined on 0, implies that D is not a sufficient a-subalgebra even though it
there exists an S -measurable bounded real valued function g includes the sufficient a-subalgebra A.

defined on ! such that f dP= fg dP for each A in Sand Filtrations of a-algebras play a prominent role in many

A A areas of conditioning. A common misconception concerning
filtrations regards the relationship between the regularity of

for all P in P. That is, g is almost surely [P] equal to the the sample paths of a random process and the continuity of
conditional expectation of f conditioned on S when P is the its canonical filtration. In [9] examples are given in which a

relevant probability measure. Note that although g does not separable random process with a continuous filtration has

depend on P, the set of P-measure zero might depend on P. nonmeasurable sample paths, a random process with

It might be tempting and pleasing to the intuition to suppose infinitely differentiable sample paths has a discontinuous
canonical filtration, and a random process taking values in

that if Swere a sufficient a-subalgebra, then any a-sub- [0, 1] has a canonical filtration which is everywhere
algebra of Fwhich included S as a subset would also be discontinuous.
sufficient. The following example from [3] constructs a
nonsufficient o-subalgebra which includes a sufficient IlI. CONDITIONAL PROBABILITY
o-subalgcbra. Consider a subset H of the interval [0, 1] with the

Let Pdenote the family of probability measures P on properties that the outer Lebesgue measure of H is 1 and the

(R, 'B (R)) such that P(B) =P-B) for any set B in B (R) inner Lebesgue measure of H is 0. (For a construction of
whr, shtht)P- for any subsetsBofRw ne B in Bsuch a set, the interested reader is referred to [8, pp.67-70].)
wheR, for= ny subset B of wedefine -B and Further, let Q = [0, 1] and let X denote Lebesgue measure on
(xe R:-xe B). LetA={(Be !B(R):B=-BJ and B[,].Dfn T(HcB)JH B)B 1  2

note that A is a a-subalgebra of B (R). Further, A is a

sufficient a-subalgebra since, given any bounded Borel r B ([0, 1])) and note that Fis a a-algebra on £ and that

measurable function f, g(x) = (f(x) + f(-x))/2 is an B (10, 1]) is a a-subalgebra of F Now, define a probability

f f measure P:f-i[0, 1] on the measurable space (P2, F) via
A-measurable function for which fB 1) U (HC 2)) = (B ) + (B2))/2 to obtain a

A A

A e A and any P e P. probability space (Q, F, P). (That P is well-defined follows

Suppose now that Z is a subset of R which contains 0 from the properties of H.)

and for which Z = -Z. Also, define D = Consider now this probability space (0, , P). The
following example, adapted from [2, p.464, 33.131, shows

(B u A : B E B (R), B c Z. and A E A). A straight- that conditional probabilities need not be measures.
forward examination shows that Dis a a-subalgebra of Since P(H) = 1/2 and P(B) = X(B) for B e 'B ([0, 11)
B (R) which includes A implies that that P(H r) B) = X(B)/2 = P(H)P(B), it follows

Assume that D is a sufficient a-subalgebra and let f be a that H is independent of B ([0, 1]). Let F be a set in F with
bounded Borel measurable function. Then there exists a probability zero and assume that P( I B ([0, 1J))(o) is a

D -measurable function g for which Jf dP = Jg dP for any probability measure on F for each o outside of the null set

D D F. Note that there exists a collection (An: n e N) of
D e D and any P e P. Let x r Z and note that I x ] D. subsets of [0, 1] such that B ([0, 1]) = o((An: n r NJ) and
Choosing D = (x) above then implies that f(x)P((x)) =
g(x)P( (x)) for any measure P in P. Now let x E Zc and such that (An: n e N) is closed under finite intersections.

notethat (x, -x) r D, (x) v D, and (-x) e D. Letting D Define Kn= (O e 0: P(An I B ([0, l]))() = IAn(o)) and
= (x, -x) above implies that (f(x) + f(-x))P((x)) = note that Kn r= B (0, 1]) and P(Kn) = 1 for all n e N since
2g(x)P([x)) since P((x)) = P((-x)), by definition of P, *
and g(x) = g(-x), since g is D -measurable. Given any P(A n I B ([0, 1])) = IAn a.s. Now, let K = n Knr)FC and

x e R, there exists a measure P in!? for which P((x)) > 0..n=
Thus, terse eta easure = i E fZ r whi P(x 0 note that P(K) = 1. Further, note that the function which,
Thus, we see that g(x) = f(x) if x < Z and g(x) = for a fixed w in K, maps an element B of B ([O, 1]) to IB(W)
(f(x) +f(-x))/2 if x Ze . Let f(x)---- ifx <O0and f(x) = 1

if x > 0. This choice. for f implies that g, as defined above, is a probability measure on B ([0, 1]) which agrees with

is nonzero on Z and zero on Zc. Hence, we have that Z P(B I B ([0, 1]))(w) whenever B e (An: n F N). Thus, the

= g-l(0)))c e D. Now choose a subset Zo of R which Dynkin system theorem [ 1, p.169] implies that foro e K,
contains 0, is such that Z. = -Z o , and which is not an P(B I B ([0, 1]))(a)) is uniquely determined to be IB(M) for

element of B (R). (Such sets abound.) Substituting Z0 for any set B in B ([0, 11). Thus, in particular, if oe K then

Z thus implies, based on the above discussion, that Z0e D. P(( w) I B ([0, l]))(w) = 1. Now, recalling we assumed that
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P(- I B ([0, 1))(to) is a probability measure on Ffor each W dependent random variables. Let B i = S2-1((i)) for each

outside of the null set F, we see that if co E Hr-K then integer i. There exists k such that Bk has positive proba-

P(H I B ([0, 1]))(oi) a P([ w} I B ([0, 1]))(w) = I, and if bility. On such a set Bk we have that P(Y 1 = i, S3 =j S2 )
o r Hcr,K then P(II I B (10, 1]))(w) < = P(Y1 

= i, S2 = k, S3 =j ) / P(S 2 = k )

P((()c I B[O, fl))(o)=0. Thus,PfYE K,then =P(y 1 = i )P(Y 2 = k -i )P(Y 3 
= j - k )/P(S2 = k)

p({H~ I B ([0, 1]))(O) = 0. Thus, if and B QK, 1jen=M l=iPY /PS ) (3=
= (P(Y1 = i ) P(Y2 = k - i ) / P(S2 = k )) P(Y3 =j -k)P(H I!B([0, 1l]))(o) = IH(wo). But Hand B ([0, 1]) are = (P(Y 1 = i, S2= k )/P(S2 = k)) P(Y3 -J -k )

independent, and hence P(H I B ([0, 1])) = P(H) = 1/2 a.s. = P(Y1 = i I S2 ) P(Y3 =j - k )
This contradiction implies that P(- I B (10, 1]))(o) is not = P(YI = i I S2 ) (P(Y 3 = j - k ) P(S 2 = k )/P(S2  k))
almost surely a probability measure on F Hence, a = P(YI = i I S2 ) (P(S 2 = k, S3 =j )/P(S2 = k ))
conditional probability is not necessarily a measure. = P(Y1 = i I S2 ) P(S3 =j I S2 ). Thus, we conclude that

A regular conditional probability allows one to sidestep even though Y 1 and S3 are dependent random variables, YI
many of the undesirable aspects of conditional probability
since a regular conditional probability is by definition and S3 are conditionally independent given O(S2).
required to be a measure for each fixed o a Q. Unfor-
tunately, however, regular conditional probabilities do not V. CONDITIONAL EXPECTATION
always exist. In fact, the situation detailed above, in
addition te showing that a conditional probability need not be Let X be an integrable random variable defined on the
a measure, also provides an example in which a regular probability space (Q, F, P), and let H be a o-subalgebra of
conditional probability does not exist. F. Then can the conditional expectation E[X I 9f] be

IV. CONDITIONAL INDEPENDENCE expressed as fX dP(. I H), where P(- I H) denotes

The concept of conditional independence arises 0
frequently in many aspects of probability theory. For conditional probability given H? The alert reader will
example, the concept plays an important role in the study of immediately give a negative response to this question, since,
Markov processes. Unfortunately, misconceptions often
arise regarding the relationship between conditional recalling Section III, P(. I H) might not be a measure and
independence and independence. As the following examples hence the preceding integral might not even be defined.
adapted (with a correction) from [4, p.221] indicate, the The following example counters a common misconcep-
notions of independence and conditional independence taken tion concerning versions of conditional expectations. In

with respect to a nontrivial a-subalgebra are unrelated. particular, a random variable is given which is equal a.s. to a
conditional expectation yet is not a version of the conditional

Consider a probability space (0, F, P) and a a-sub- expectation.
algebra Hof F. Further, let .Hfj and H2 be two families Consider the probability space consisting of [0, 1],

each composed of elements from F The families 9( and B ([0, 1)), and Lebesgue measure on B ([0, 1]), and let G
H s if denote the o-algebra consisting of the countable and

are said to be conditionally independent given cocountable subsets of [0, 1]. Let X be the identity map on

P(A 1 n A2 I H) = P(A I I H) P(A 2 I H) a.s. for all [0, I] and note that E[X I GI = 1/2 a.s. Further, let Y =

A Ie I and A2 E H. Further, two random variables X 1(1 - c) where C denotes the Cantor ternary set. Note that
2

and Y defined on (02, F, P) are said to be conditionally Y = E[X I G ] a.s., yet Y is not G -measurable (since C is
independent given H if o(X) and o(Y) are conditionally neither countable nor cocountable) and hence is not a version

independent given H ofE[X I G.
Let X1 and X2 be two independent identically distributed Another commonly occurring misconception regarding

conditional expectation is that it is a "smoothing" operator.random variables such that P(X1 = 1) = P(X 1 = -1) =1/2. Cniefreape admpoesf~)t~R
FurterletZ =X I+ X, ad le Ai= X-1 I ) fr i= I Consider, for example, a random process {X(t) : t e R)

Fur2.n the l setX +i I, and let 1/2 on X()) for i = I or defined on a probability space (QI, F, P) and a a-subalgebra

and 2. In this case, P(AiZ) = 1/2 on Z-l(0)fori= 1 or Hof F It has been argued by some (see for instance
2, and P(A 1 n A2 I Z) = 0 on Z-1 ((Oj). In particular, several recent papers in the area of perturbation analysis) that

P(Al n A2 I Z) * P(A I IZ) P(A2 I Z) on an event of positive E[X(t) I H] is "smoother" than X(t) as a function of t. To

probability. Thus, the independent random variables X 1 and dispel this absurd notion simply let X(t) be an
H-measurable random process which is discontinuous

X2 are not conditionally independent given a(Z). everywhere; the version of E[X(t) I H] given by X(t)
Consider now three mutually independent random obviously retains this same property.

variables YI, Y2 , and Y3 such that each random variable Perhaps a little less obvious is the fact that, for a random
takes on only integer values and such that P(Yi = m) < I for variable X on (Q, F, P) and a a-subalgebra G of F,
all integers m and for i = 1, 2, 3. Further, let S2 = Y1 + Y2  E[X I G I need not be as "smooth" a function of o) as X.
and S3 = YI + Y2 + Y3 and notice that Y1 and S3 are Consider for instance the probability space given by the.
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interval [0, 1J, the a-algebra G given by the countable and convergence do not imply that the corresponding conditional
cocountable subsets of (0, 1], and Lebesgue measure on G. expectations converge.

If we let X = I, then a version ofE[X I G] is given by Let Q (0, 1) x (0, 1), let H= [B x (0, 1): B e
1 - IB where B equals the set of rationals in [0, 1]. Hence, B ((0, 1)), and note that His a a-algebra on Q. Let i
even though X is everywhere continuous, there exists a denote Lebesgue measure on B ((0, 1)), and let P denote
version of E[X I G J which is everywhere discontinuous. Lebesgue measure on B ((0, 1) x (0, 1)). For each positive

A commonly encountered property of conditional
expectation is the so-called nesting property. Unfortunately, integer n, le, Bn = (0, and let An denote the n-th term in

this property is sometimes misapplied. In this example, the sequence (0, 1), (1, 1)9 (0, 1), (1, 1), (1- 3) (1, 1),
from [6], it is shown that E[E[X I Y]] may exist even when 2 2 4 4 2 2 4 4
the expectation of X does not exist. In other words, before (0, 1), (1, 1), ---. Note that (2, B ((0, 1) x (0, 1)), P) is a
calculating EE[X I Y]1 and clainiig one has found the mean 8 8 ' 4
of X, it is necessary to first ascertain that the mean of X probability space, and that H is a o-subalgebra of
actually exists. -B ((0, 1) x (0, 1)). Now, for each positive integer n, define

Consider random variables X and Y defined on the same arandom variable Xn(x, Y) =-1 IA

probability space such that Y possesses a probability density a a x B(x, y). Let

function g(y) given by g(y) = exp--Y; y > 0, and, for Be B ((0, 1)), and note that

each y > 0, Y is such that a conditional density function of X f Xn dP = f IAn x Bn dP
given Y = y, denoted by f(xly), exists and is given by Bx(O, 1) Bx(O, 1) 903n)

f(xly) = -- exp( yx2) ; y > 0 and x E R. It follows
immediately that E[X I Y] = 0 as. and therefore E[E[X I Y]] = 1(An r) B) = J An x (0, 1) dP, which thus implies
= 0. Notice, however, that the mean of X does not exist Bx(0, 1)
since X has a Cauchy density h(x) given by h(x) =

J f(xly) g(y)dy 1 forXE R. that E[X n I H1 = IA. x (0, 1) a.s. Now, note that Xn 0

R n (I + x2) for each positive integer n, and that Xn - 0 as n - ,. Note
For another example, consider random variables X and also that, since E[IXni] = p(An) - 0, the random variables

Y each defined on the same probability space (!., F, P) and (Xn: n e N) are uniformly integrable. Further, note that

a o-subalgebra 2, of F. Another commonly encountered ' 1 and that ia 0. Thus,
misconception concerning conditional expectation is that IAn x (0, 1) 

=  n - iA n x (0, 1) 
=

E{X I M and EfY I M] are independent if X and Y are n-

independent. The following counterexample, which we see that, even though the random variables {Xn: n c NJ
[12, p.1331 attributes to C. Sugahara, demonstrates that in are uniformly integrable, li E[Xn I H] = 1 as. and
general this conclusion is false. n--*e

Let U and V be independent rando.n variables, each Jim E(Xn fI = 0 as. In particular, Fatou's lemma does
defined on the probability space (Q, F, P), and each having n--
a zero mean, unit variance Gaussian distribution. Define X not hold and the conditional expectations do not converge.
= U + V and Y = U - V, and note that X and Y are
independent random variables each having a zero mean VI. REGRESSION FUNCTIONS
Gaussian distribution with a variance of 2. Further,
E[X I a(U)J = E[U + V I a(U)] = U + E[V I (U)] = Given two random variables X and Y defined on the

U + E[V] = U a.s., and E[Y I a(U)J= E[U - V Ia(U)] same probability space, a common problem concerns the
determination of the form of the regression function

U - E[V I o(U)] = U - E[V] = U a.s. Hence, any version of E[X I Y=y]. For example, [13] considers this problem when

EIX I 0(U)] and any version of EfY I o(U)] are equal almost both X and Y are uniformly distributed. In this example, we
surely to the same positive variance Gaussian random show that the existence of a joint probability density function
variable and hence cannot be independent. Further, we note for X and Y in no way guarantees that the regression
that even the ubiquitous Gaussian assumption does not function will obey any regularity property, other than Borel
alleviate this problem. measurability.

Fatou's lemma and uniform integrability are powerful Let g:R -- R be Borel measurable and define f(x,y) =
tools in analysis and are often relied upon in the area of 4exp(-exp(lyl) Ix - g(y)l). Note that f(xy) is a joint
estimation theory. We recall that if a sequence of random 4
variables is uniformly integrable then almost sure r C
convergence implies convergence of the corresponding probability density function since J J f(xy) dx dy
expectations. Convergence of conditional expectations with R R
respect to an arbitrary o-subalgebra, however, does not f f
follow in general. The following example, adapted from,, d 4
[16], describes a situation in which Fatou's lemma does not R R
hold and in which uniform integrability and almost sure
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r r space. A commonly considered problem in the area of
= f exp(-exp(lyl) Iz1) dz dy = f. exp(-Iyl) dy = 1. distributed estimation is that of how to best fu!e or combine

R R R estimates of the form E[X I D], where D is a nonempty
proper subset of (Y1 .  Yn), in order to obtain a single

Let X and Y be random variables such that the pair good estimate of E[X I Yl,... , Ynl. In the following
(X, Y) has a joint density function given by f(x, y). Notice
from the above calculation that a second marginal density of example, from [7], a situation is described, using common

distributions, in which any such method of fusion is useless.
f(x, y) is given by fy(y) -xp(-=yl). Recalling that For a positive integer n greater than one, consider a set

2 of random variables {X, Y1 .... ,Y.) with a joint
E[X I Y=y= fR x dxandsubstitutingfor fyxyy probability density function given, as in [11 ], by

R fy(y) fix yiYn =('' exp -IX 2 +Xy
implies that E[X I Y=y] =l

2exp(lyl) ,-exp(-xp(lyl)lx-g(y 1)dx 4 1 -x2 n It fol
g+y)I) Il xx It folows straight-

R L 2

2 exp(yl) f ((z + g(y)) I exp(--exp(tyl) Izl) dz forwardly that the set (X, Y 1 . ... Yn) is not mutually
4 Gaussian and not mutually independent, yet any proper

R subset of {X, Y 1 . .. Yn} containing at least two random
2 )exp( y)g(y)e y = g(Y)" variables is mutually independent, mutually Gaussian, and

=Hnc i, 2 randoml vail )

Hence, the random variables X and Y with the joint density identically distributed with each random variable having zero
function f(x, y) are such that EIX I Y=y] = g(y) where we mean and unit variance. For any nonempty proper subset D
recall that g(. ) was an arbitrarily selected Borel measurable of {Y1 . .. Yn), we note that E[X I D = 0 a.s. since X is
function. independent of D. However, that E[X I Yi . .. Yn] =

VII. MEAN SQUARE ESTIMATION . Y n exr-y2 + y2 + + y2) a.s. follows22~ "n -2 1 ' 2 n)]

One of the most common misconcentions i, estimation easily. Thus, since any Borel measurable function of the
theory is that conditional expectation minimizes mean square estimates E[X I D] where D ranges over all nonempty
error. This mistaken concept arises in estimation and filter- proper subsets of (Y1 .... Y.) would be constant almost
ing applications in engineering as well as in many L2 mini- surely, it would be absurd to attempt to estimate
mization problems in probability and statistics. As the fol- E[X I Y 1 ..... Yn] based on a combination of these esti-
lowing example from [ 15] indicates, even for bounded ran- mates. Once again, notice that the oft used and much abused
dom variables, conditional expectation may not even come Gaussian assumption does not alleviate this difficulty.
close to minimizing the mean square error even though there
exists a function mapping the reals into the reals by which IX. MARTINGALES
the random variable of interest may be estimated precisely.

Consider the set H and the probability space (1, , P) The subject of martingale theory is an important aspect of

on conditioning which finds many applications in information
used in Sction III. Let k. denote Lebesgue measure onsciences and systems. The following example shows that a
B ([0, I]). Further, let A be a fixed nonzero real number martingale may have a constant positive mean, converge a.s.
and define two random variables X and Y on (12, F, P) via to zero in finite time, and yet with positive probability exceed

X(W) = o and Y(w) = A IH(o). Notice that o(X) = any real number.
Let [Xn: n e N) be a sequence of mutually independent

B ([0, 1]) and that o(Y) = (2, 0. H, He9. Further, since identically distributed random variables such that P(X1 = 0)
P(H) = 1/2 and P(B) = X(B) for B e B ([0, 1]), we see that = P(X1 = 2) = 1/2. Now, for each positive integer n,
P(H r) B) = X(B)/2 = P(H)P(B), or that Xis independent of define Yn = XlX 2 ... Xn, and note that (Yn: n e N) is a
Y. Hence EIY I X] = E[Y] = A/2 a.s. which implies that
E[(Y - E[Y I XI) 2 ] = E[(Y -A/2)21 = A2/4. But, Y(co) = martingale and that E[Y n] = 1 for all n E N. Further, notice

A IH(X((O)) for all 0) 6 2. Thus, EJ(Y - A IH(X)) 2 ] = 0. that not only does the sequence (Yn: n e N) converge

In other words, for this example there exists a function almost surely to zero, but with probability one, only a finite

f:R-4R such that Y(o) = f(X(wo)) for all o e 12 yet, by number of terms of the sequence (Yn: ne N) are nonzero.

choice of A, El (Y -E[Y I X)) 2 could be arbitrarily large. Even so, it follows easily that Yn exceeds any real value

We note further that in this case o(Y) is finite, a(X) contains with positive probability since P(Yn = 2n) > 0 for all n e N.
all singletons, and all moments of X and Y exist. Consider now the following example from [14] which

illustrates a pathology concerning the martingale conver-
VIII. DISTRIBUTED ESTIMATION gence theorem. In particular, it shows that in certain

circumstances the martingale convergence theorem might be
Consider a random variable X and a set of random useless as an estimation technique.

variables (Y . .Yn) all defined on the same probability
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Consider the probability space (R, B (R), P) where P working in the area of information sciences and systems. In
denotes zero mean, unit variance Gaussian measure on conclusion, if this paper serves no other purpose, we hope it

will serve as a :eminder that conditioning can be a dangerous
(R, B (R)). Let P* denote the inner P measure on tool in the hands of amateurs.

(R, B (R)). Let S be a subset of R such that P,(S) = P,(Sc) ACXNOWLEDGEMENT

= 0. (That such sets exist is shown in [141.) Further, let WdV
= ((S n B1) U (Sc ) B2): B 1, B2 e B (R)) and note that This research was supported by the Air Force Office ofScientific Research under Grant AFOSR-86-0026.
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We hope these comments will be helpful to those using

conditioning as a tool in investigations. Although some of
these examples are undoubtedly well known to the specialist
in measure theory, as previously mentioned, our experience
indicates that these caveats have been overlooked by many


